sábado, 3 de diciembre de 2011

EL SCR



Área de disparo seguro.

En esta área (Figura 3) se obtienen las condiciones de disparo del SCR. Las tensiones y corrientes admisibles para el disparo se encuentran en el interior de la zona formada por las curvas:

Curva A y B: límite superior e inferior de la tensión puerta-cátodo en función de la corriente positiva de puerta, para una corriente nula de ánodo.

Curva C: tensión directa de pico admisible VGF.

Curva D: hipérbola de la potencia media máxima PGAV que no debemos sobrepasar


.






El diodo puerta (G) - cátodo (K) difiere de un diodo de rectificación en los siguientes puntos:

  • Una caída de tensión en sentido directo más elevada.

  • Mayor dispersión para un mismo tipo de tiristor.


    Características dinámicas. Tensiones transitorias:
    - Valores de la tensión superpuestos a la señal de la fuente de alimentación.
    - Son breves y de gran amplitud.
    - La tensión inversa de pico no repetitiva (VRSM) debe estar dentro de esos valores.
    Impulsos de corriente:
    - Para cada tiristor se publican curvas que dan la cantidad de ciclos durante los cuales puede tolerarse una corriente de pico dada (Figura 4).
    - A mayor valor del impuso de corriente, menor es la cantidad de ciclos.- El tiempo máximo de cada impulso está limitado por la temperatura media de la unión.






  • MÉTODOS DE DISPARO.

    Para que se produzca el cebado de un tiristor, la unión ánodo - cátodo debe estar polarizada en directo y la señal de mando debe permanecer un tiempo suficientemente larga como para permitir que el tiristor alcance un valor de corriente de ánodo mayor que IL, corriente necesaria para permitir que el SCR comience a conducir. Para que, una vez disparado, se mantenga en la zona de conducción deberá circular una corriente mínima de valor IH, marcando el paso del estado de conducción al estado de bloqueo directo.

    Los distintos métodos de disparo de los tiristores son:


    - Por puerta.
    - Por módulo de tensión.
    - Por gradiente de tensión (dV/dt)
    - Disparo por radiación.
    - Disparo por temperatura.

    El modo usado normalmente es el disparo por puerta. Los disparos por módulo y gradiente de tensión son modos no deseados.



DIAC


Este es un dispositivo controlado por voltaje, el cual se comporta como dos diodos zener puestos en contraparalelo, como ya lo dijimos: cuando el voltaje de cualquier polaridad entre sus dos terminales excede el valor especificado, entra en avalancha y disminuye su resistencia interna a un valor muy bajo. Esto significa que, si es colocado en paralelo con la salida de una fuente de corriente alterna podrá recortar todos los picos positivos y negativos que pasen del voltaje del umbral del diac. Si es puesto en serie, solamente dejará pasar corriente cuando lleve más tensión que la del gatillado para triacs en circuitos de corriente alterna. El dispositivo tiene un rango simétrico de conmutación(en ambos sentidos) de 20 a 40 voltios, tensión que usualmente excede el punto de umbral del gate de los triacs, de tal forma que estos trabajan siempre en un nivel seguro.

Si bien es cierto que el SCR se puede acondicionar para el manejo de cargas alimentadas con corriente alterna, es un hecho que tal cosa no es del todo práctica ni económica. Si se colocan 2 SCR en contraparalelo se necesitan dos circuitos de control independientes para el manejo de sus compuertas, lo cual le resta precisión al diseño y por ende, aumenta los riesgos de fallas.

El diseño de los primeros TRIACs fue la respuesta a la necesidad industrial de dispositivos tiristores que pudieran controlar en fase todo el ciclo de una onda de corriente alterna, incorporando las funciones de 2 SCRs dentro de una sola pastilla semiconductora, y ambos controlados por un solo gate. Las características de compuerta(gate) del TRIAC son muy diferentes de aquellas para dos SCR en contraparalelo, para los SCR, se debe aplicar una señal positiva de control entre el Gate 1 y el terminal principal 1 cuando el terminal Principal 1 es negativo, y entre el Gate 2 y el terminal Principal 2 sea negativo. Este método de operación requiere de dos circuitos separados de compuerta.

En el TRIAC, el Gate 1 y el Gate 2 están conectados juntos y se pueden operar con solamente un circuito de control conectado entre las compuertas y el terminal Principal 1. El modo más fácil de gatillado para control de corriente alterna, se obtiene polarizando positivamente el terminal de compuertas cuando el Terminal Principal 1 sea positivo. En otras palabras, par poner en conducción en ambos sentidos al TRIAC basta con darle al gate un poco de señal de la misma corriente(polaridad) que haya en ese momento en el Terminal Principal 2.

El gatillado para control de corriente alterna también es posible con polarización negativa en el terminal de compuertas durante ambos semiciclos. Para manejo de corriente directa, basta con suministrar al gate una señal positiva de manera similar a como se controla un SCR.

Si ponemos en serie con el terminal del gate un dispositivo que garantice pulsos de disparo con voltaje superior al nivel de umbral del TRIAC(punto en el cual el triac no sabe si conducir o no), obtendremos lo que se conoce como QUADRAC. Este dispositivo se consigue ya integrado dentro de encapsulados iguales a los de los triac, estos se reconocen por la referencia, por ejemplo: Q4006LT. El número 400 señanla el voltaje del triac, el 6 indica la corriente de trabajo en amperios, y las letras LT significan que tienen DIAC incluido en el gate

EL TRIAC




El diseño de los primeros TRIACs fue la respuesta a la necesidad industrial de dispositivos tiristores que pudieran controlar en fase todo el ciclo de una onda de corriente alterna, incorporando las funciones de 2 SCRs dentro de una sola pastilla semiconductora, y ambos controlados por un solo gate.

En el TRIAC, el Gate 1 y el Gate 2 están conectados juntos y se pueden


operar con solamente un circuito de control conectado entre las compuertas y el terminal Principal 1. El modo más fácil de gatillado para control de corriente alterna, se obtiene polarizando positivamente el terminal de compuertas cuando el Terminal Principal 1 sea positivo.

Si ponemos en serie con el terminal del gate un

dispositivo que garantice pulsos de disparo con voltaje superior al nivel de umbral del TRIAC, obtendremos lo que se conoce como QUADRAC.


CIRCUITO PRACTICO PARA DISPARO


En la figura se muestra un circuito practico de disparo de un triac utilizando un UJT. El resistor RF es un resistor variable que se modifica a medida que las condiciones de carga cambian. El transformador T1 es un transformador de aislamiento, y su propósito es aislar eléctricamente el circuito secundario y el primario, para este caso aísla el circuito de potencia C.A. del circuito de disparo.
La onda senoidal de C.A. del secundario de T1 es aplicada a un rectificador en puente y la salida de este, a una combinación de resistor y diodo zener que suministran una fo


rma de onda de 24 v sincronizada con la línea de C.A.





TRANSISTOR UJT





El transistor UJT (transistor de unijuntura - Unijunction transistor) es un dispositivo con un funcionamiento diferente al de otros transistores. Es un dispositivo de disparo. Es un dispositivo que consiste de una sola unión PN.


TRANSISTOR MONOUNION UJT

El transistor monounión (UJT) se utiliza generalmente para generar señales de disparo en los SCR. En la fig.5 se muestra un circuito básico de disparo UJT. Un UJT tiene tres terminales, conocid
as como emisor E, base1 B1 y base2 B2. Entre B1 y B2 la monounión tiene las características de una resistencia ordinaria (la resistencia entre bases RBB teniendo valores en el rango de 4.7 y 9.1 K). Cuando se aplica el voltaje de alimentación Vs en cd, se carga el capacitor C a través de la resistencia R, dado qu
e el circuito emisor del UJT está en estado abierto. La constante de tiempo del circuito de carga es T1=RC. Cuando el voltaje del emisor VE, el mismo que el voltaje del capacitor llega a un valor pico Vp, se activa el UJT y el capacitor se descarga a través de RB1 a una velocidad determinada por la constante de tiempo T2=RB1C. T2 es mucho menor que T1. Cuando el voltaje del emisor VE se reduce al punto del valle Vv, el emisor deja de cond
ucir, se desactiva el UJT y se repite el ciclo de carga.



TRANSISTOR MONOUNION PROGRAMABLE

El transistor monounión programable (PUT) es un pequeño tiristor que aparece en la fig.7. Un PUT se puede utilizar como un oscilador de relajación, tal y como se muestra en la fig.7b. El voltaje de compuerta VG se mantiene desde la alimentación mediante el divisor resistivo del voltaje R1 y R2, y determina el voltaje de punto de pico Vp. En el caso del UJT, Vp está fijo para un dispositivo por el voltaje de alimentación de cd, pero en un PUT puede variar al modificar al modificar el valor del divisor resistivo R! y R2. Si el voltaje del ánodo VA es menor que el voltaje de compuerta VG, le dispositivo se conservará en su estado inactivo, pero si el voltaje de ánodo excede al de compuerta en una caída de voltaje de diodo VD, se alcanzará el punto de pico y el dispositivo se activará. La corriente de pico Ip y la corriente del punto de valle Iv dependen de la impedancia equivalente en la compuerta RG = R1R2/(R1+R2) y del voltaje de alimentación en cd Vs. N general Rk está limitado a un valor por debajo de 100 Ohms.

Circuito de disparo de un tiristor con un transistor UJT

Finalidad:
-Analizar las diferentes tecnicas de control de los rectificadores
Secuencia a realizar:
1)Montar el circuito indicado en la figura.
2)Medir con el osciloscopio la señal del diodo zener, en el condensador, en B1 del transistor y la salida V.
3)Representar las señales sincronizadas con la tensión del transformador.
4)explicar el funcionamiento del circuito.

Mosfet

Hay dos familias de transistores de efecto de campo: los JFET y los MOSFET. Pese a que el concepto básico de los FET se conocía ya en 1930, estos dispositivos sólo empezaron a fabricarse comercialmente a partir de la década de los 60. Y a partir de los 80 los transistores de tipo MOSFET han alcanzado una enorme popularidad.

MOSFET significa "FET de Metal Oxido Semiconductor" o FET de compuerta aislada, es un arreglo de cientos de transistores integrados en un sustrato de silicio. Cada uno entrega una parte a la corriente total.

La característica constructiva común a todos los tipos de transistor MOS es que el terminal de puerta (G) está formado por una estructura de tipo Metal/Óxido/Semiconductor.




MOSFET


Tanto en el MOSFET de canal N o el de canal P, cuando no se aplica tensión en la compuerta no hay flujo de corriente entre en drenaje (Drain) y la fuente (Source)

Para que circule corriente en un M


OSFET de canal N una tensión positiva se debe aplicar en la compuerta. Así los electrones del canal N de la fuente (source) y el drenaje (Drain) son atraídos a la compuerta (Gate) y pasan por el canal P entre ellos. En la región activa de un MOSFET en modo de enriquecimiento, la capacitancia de entrada y la trasconductancia es casi independiente del voltaje de la compuerta y la capacitancia de salida es independiente del voltaje del drenador. Este puede proveer una potencia de amplificación muy lineal.

Dos capacitancias son importantes en un conmutador de encendido-apagado con MOSFET. Éstas son Cgs entre Gate y la fuente y Cgd entre Gate y dre

naje. Cada valor de capacitancia es una función no lineal del voltaje. El valor para Cgs tiene solamente una variación


En la mayoría de los circuitos con MOSFET, el objetivo es encenderlo tan rápido como sea posible para minimizar las pérdidas por conmutación. Para lograrlo, el circuito manejador del gatillo debe ser capaz de alimentar la suficiente corriente para incrementar rápidamente el voltaje de gatillo al valor requerido Apagado



APLICACION


El MOSFET es frecuentemente usado como amplificador de potencia ya que ofrecen dos ventajas sobre los MESFET’s y los JFET’s y ellas son:

En la región activa de un MOSFET en modo de enriquecimiento, la capacitancia de entrada y la trasconductancia es casi independiente del voltaje de la compuerta y la capacitancia de salida es independiente del voltaje del drenador. Este puede proveer una potencia de amplificación muy lineal.
El rango de voltaje activo de la compuerta puede ser mayor porque los MOSFET’s de canal n en modo de vaciamiento pueden operar desde la región de modo de vaciamiento (-Vg) a la región de modo de enriquecimiento (+Vg).


viernes, 2 de diciembre de 2011

EL IGBT

La sigla IGBT corresponde a las iniciales de isolated gate bipolar transistor o sea transistor bipolar de puerta de salida
El IGBT es un dispositivo semiconductor de potencia híbrido que combina los atributos del TBJ y del MOSFET. Posee una compuerta tipo MOSFET y por consiguiente tiene una alta impedancia de entrada. El gate maneja voltaje como el MOSFET.

El transistor bipolar de puerta aislada (IGBT) es un dispositivo electrónico que generalmente se aplica a circuitos de potencia.

Este es un dispositivo para la conmutación en sistemas de alta tensión. La tensión de control de puerta es de unos 15V.




CURVA CARACTERISTICA IGBT:



Consideremos que el IBGT se encuentra bloqueado inicialmente. Esto significa que no existe ningún voltaje aplicado al gate. Si un voltaje VGS es aplicado al gate, el IGBT enciende inmediatamente, la corriente ID es conducida y el voltaje VDS se va desde el valor de bloqueo hasta cero. LA corriente ID persiste para el tiempo tON en el que la señal en el gate es aplicada. Para encender el IGBT, la terminal drain D debe ser polarizada positivamente con respecto a la terminal S.

EL IGBT requiere un valor límite VGS(TH) para el estado de cambio de encendido a apagado y viceversa. Este es usualmente de 4 V. Arriba de este valor el voltaje VDS cae a un valor bajo cercano a los 2 V. Como el voltaje de estado de encendido se mantiene bajo, el gate debe tener un voltaje arriba de 15 V, y la corriente iD se autolimita.






GTO

Un tiristor GTO es un SCR que puede apagarse por una pulsación suficientemente grande en su compuerta de entrada, aun si la corriente iD excede IH.



El disparo se realiza mediante una VGK >0. El bloqueo se realiza con una VGK < 0. La ventaja del bloqueo por puerta es que no se precisan de los circuitos de bloqueo forzado que requieren los SCR.

Mientras el GTO se encuentre apagado y no exista señal en el gate, el dispositivo se bloquea para cualquier polaridad en el ánodo, pero una corriente de fuga (IA leak) existe. Con un voltaje de bias en directa el GTO se bloquea hasta que un voltaje de ruptura VAK = VB0 es alcanzado. En este punto existe un proceso dinámico de encendido., VAK = 3V y la corriente IA es determinada por la carga. Cuando el GTO se apaga y con la aplicación de una voltaje en inversa, solo una pequeña corriente de fuga (IA leak) existe.

Con un voltaje de polarización directo aplicado al ánodo y un pulso de corriente positiva es aplicada al gate, el GTO se enciende y permanece de esa forma. Para ésta condición, existen 2 formas de apagarlo. Una forma es reduciendo la corriente de ánodo IA por medios externos hasta un valor menor a la corriente de holding Ih, en la cual, la acción regenerativa interna no es efectiva.


FORMA DE ONDA EN EL ENCENDIDO DEL GTO




Para entrar en conducción, se necesita una subida rápida y valor IGM suficientes para poner en conducción todo el cristal. Si solo entra en conducción una parte y circula toda la corriente se puede dañar.

FORMA DE ONDA EN EL APAGADO DEL GTO







Como el GTO tiene una conducción de corriente unidireccional, y puede ser apagado en cualquier instante, éste se aplica en circuitos chopper y circuitos inversores a niveles de potencia en los que los MOSFET's, TBJ's e IGBT's no pueden ser utilizados. A bajos niveles de potencia los semiconductores de conmutación rápida son preferibles.